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Neural Networks Approach to the Determination of 
the Machining Parameters 

Kyunghyun Choi* 
(Received August 5, 1995) 

A neural networks based approach to determine the appropriate  machining parameters such 

as speed, depth of cut and feed is proposed in this study. In this approach neural networks were 

used for building automatic process planning systems. Training o f  neural networks was 

performed with back propagation method by using data sets sampled in a st~indard handbook. 

These networks consist of simple processing elements or nodes capable of processing informa- 

tion in response to external inputs. This approach saves computing time and storage space. In 

addition, it provides easy extendability as new data become available. Currently, the system 

provides three neural networks: t\~r turning, lor milling and for drill ing operalions. The 

performance of the trained neural network for drilling is evaluated to examine hove well it 

predicts the machining parameters, l e s t  resuhs show that the neural network for the: turning 

operation is able to predict the machining parameter values within an acceptable error rate. 

Key Words :  Neural Networks, Back Propagation Model, Machining Parameters, Automatic 

Process Planning 

1. Introduction 

In machining operations, the surface finish, 

force, and power consumption are directly 

affected by the machining parameters, feed rate, 

speed, and depth of cut. The selection of the 

machining parameters affects the quality, time 

and cost to produce a part. These parameters are 

neithe~ arbitrary nor constants for different ma- 

chining processes. 

Earlier studies on economical selection of 

machining parameters are grouped into three 

categories:  opt imal  techniques,  h a n d b o o k  

databases, and machinist experience, in optimal 

techniques, main objective functions proposed for 

the machining operations are related to the pro- 

duction cost(Bhattacharyya, 1970), production 

rate(Field,  1969), and profit rate(Wu, 1!)66). The 
proposed constraints are subject to machine tool 

capacity and component quality specifications. 
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Various methods have been applied to maximize 

or minimize an objective function under con- 

straints, including the mathematical programming 

methods(Barrow, 1971, Yellowley, 1989, Ermer, 

1971, Iwata, 1972). These optimal technique 
approach requires quantifying the result of using 

a set of parameters in the form of mathematical 

relationships that can be optimized for a desired 

result. Due to the complexity of  interrelationships 

between the parameters, such techniques have not 

widely used in practice. 

Machinists can select a good set of parameters 

for a required outcome through experience. How- 

ever, experience varies widely and is very difficult 

to capture in a machine useable format. Hand- 

books of test results contain recommended ma- 

chining parameters for efficient machining. The 

data set contained in these handbooks is very 

large. While it may be possible to house it in a 

database, and use search engines for parameter 

determination, such an approach would be waste- 
ful. 

Neural networks have been implemented and 

used in this work for dealing with the difficulty in 
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choosing recommended machining parameters. 

These networks consist of  simple processing ele- 

ments or nodes capable of processing information 

in response to external inputs. This approach 

saves computing time and storage space. In addi- 

tion, it provides easy extendability as new data 

become available. 

2. Bas ic  M a c h i n i n g  P a r a m e t e r s  

2.1 Feed and feed rate 
Feed F can be defined as the relative lateral 

movement between the tool and the workpiece 

during a machining operation. It corresponds to 

the thickness of the chip produced by the opera- 

tion. In turning and drill ing operations, it is 

defined as the advancement of the cutter per 

revolution of  the workpiece(turning) and tool 

(drill ing).  The unit is mpr (millimeter per revolu- 

tion). In milling, it is defined as the advancement 

of the cutter per cutter-tooth revolution. The unit 

is millimeter per revolution per tooth. 

Feed rate Vj is defined as the speed of feed. 

The unit is mpm(mill imeter per minute). Mathe- 

matically feed rate can be expressed as follows: 

Vf = F n N  

where, n = t h e  number of  teeth in the cutter for 

milling, n = 1 for drill ing and turning 

N = r o t a t i o n  speed of  the cutter(dril l ing and 

milling) or workpiece(turning) in rpm 

2.2 Cutting speed 
The cutting speed 1/ can be defined as the 

maximum linear speed between the tool and the 

workpiece. The cutting speed is determined as a 

function of the diameter of the workpiece or the 

tool, and rotation speed. It can be represented as 
follows: 

rcDN 
V -  

1000 

where, V=speed ,  meter per minute 

D----diameter, millimeters 

N - - r o t a t i o n  speed, rpm 

2.3 Depth of cut 
The depth of cut is determined by the width of 
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the chip. During the roughing operation, the 

depth of  cut is usually much greater than for the 

finishing operation. For  turning, it is one-half  the 

difference between the inner and outer diameters 

of  the workpiece. Mathematically it can be 

obtained as follows: 

d~-- D o -  Di 
2 

where, alp=depth of cut, millimeters 

D o : O u t e r  diameter, millimeters 

D i = i n n e r  diameter, millimeters 

3. Neura l  N e t w o r k  Model  for 

M a c h i n i n g  P a r a m e t e r s  

The optimal machining parameters(depth of  

cut, speed, and feed rate) are calculated using 

Back Propagation Neural Networks(BPN).  The 

neural network sub module is available for use by 

a cell supervisor when new data related to ma- 

chining parameters become available. Currently, 

the system provides three neural networks: for 

turning, for milling, and for drilling operations. 

These networks have been trained based on stan- 

dard handbook data(Machinabi l i ty  Data Center, 

1972). 

X~ --*" Y~ 

Xz " *  Y2 

X i'l 'm"~ YI-I 

X~ ~ y~ 

H 1 Pk 

Fig. 1 Structure of BPN model 

The mult i- layered feed forward BPN, with full 

interconnection, consists of an output layer, input 

layer, and one or more hidden layers. Each layer 

has a set number of nodes that are chosen to fit 

the problem at hand(see Fig. 1). Each node 

(processing element) is a neuron that processes a 

set of inputs applied either from outside(X,) or 
from a previous layer(H~) to produce the output 
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by applying an activation function, f, to the 

weighted sum of inputs. The actual output, E ,  of  
the BPN with two hidden layers is given by the 

following form. 

Y,= f ( y, + ~ WLJ~) (1) 
k 

where, 

P, - -  f (p, + ~ W~Hj)  
J 

H~ =f(h~+ E W~,X,) 

The subscripts i, j ,  k, l represent the number of  

nodes in the input, hidden, and output layers, 

respectively. The biases(h~, p~,, yz) and connec- 

tion weights(W) are determined in the same way 

during the learning of the network with the 

preselected training input data set. BPN learning 

characteristics can be improved by adjusting the 

dynamic range of neuron output within ~- 

0.5 (Wasserman, 1989). The improved activation 

function is given by the following form. 

Y - -  f ( N F T )  
1 

= - 0 . 5 +  1 - - e  -wet (2) 

and the derivative of Y is given by 

i (  

The back propagation learning algorithm is a 

generalized delta rule in which the connection 

weights, W ( m )  at m-th iteration time, is updated 

with the general second-order linear stochastic 

difference equation based on the gradient descent 

method (Kosko, 1991). 

W ( m + l )  : W ( m ) - - v z J W ( m )  

+ a / J W ( m  - 1) (4) 

The r/ is the learning rate and a is the momen- 

tum term to be chosen for guaranteed and fast 

convergence. W(m)  is obtained by minimizing 

the summed squared error /,2,, with respect to W: 

d W ( m )  - OE~ OW (5) 

where, 

Em =: ~ I E  ( 7 ;  - ~T) 2 
2 p  

and To is the target output for training input 

pattern p, and 1,%" is the trained output for train- 

ing input pattern p at i-th iteration time. 

Using the chain rule, Eq. (5) renders the follow- 
ing for node I in the output layer: 

n tl~, (m) = - -  O_E~_ OY,~ 
O Y?' O W,"d 

_ OEm ,./ ~ . ' m D "  

t m J  t 1 t  ] 1  h 

= [ 7", -  Y,~] [-}-+ Y?,] 

L ~ - -  YP'] P2' (6) 

Similarly, for the hidden layers Eq.(5) yields: 

�9 DEm ~P2' 
,_4tt ,j ( m) = --b-P2' -o-I~ 

= _ [ ~ O F m  OYl " l  ., r,- ~ j f ( p z  )H# 

=(E[T~- YP]/(!,'?') ~E~) 
l 

/ ( P 2 ' )  l f f '  
= ( E i T , -  }5 ~] 

l 

8Era 011] ~ 
d I , t S ~ ( m ) -  81t7 OI, V]~ 

a r ,  o OR2' 
Y# aP2' ally / 

f (H2) x ,  

,viii.- ,,:,-] ..'m 

2 t-t~" 2 -  P2' WL) 

A four layered BPN is used for obtaining 

machining parameters. The output layer has three 

(or two) nodes representing parameters(i,  e., 

depth of cut, speed, feed) for the given machine 

operation parameters, in this case tool material, 

work piece material, geometry, etc., which specifi- 

cally constitute the number of  nodes in the input 
layer. 
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Table 1 Training input data vectors tbr drilling 

Referenced output 
Input variable variables 

Input 
Hardness Hole diameter Speed Feed 

vector Material Tool material 
(BHN) (mm) (mpm) (mpr) 

1 

2 

3 

4 
5 

6 
7 

8 

9 

10 

11 

!.2 

1.3 

14 

15 

1212 

1213 

1212 

1215 

1108 

llL13 

llL14 

125 

175 

125 

125 

175 

225 

125 

12.7 

25.4 

50.8 

19.05 

25.4 

38.1 

19.05 

M10 

M10 

M10 

M7 

M1 

M10 

MI0 

38.1 

38.1 

38.1 

39.6 

36.6 

41.2 

39.6 

12L13 125 

1005 150 

1012 150 

1019 20O 
P 

1021 200 

1030 20(1 

50.8 

6.35 

38.1 

12.7 

38.1 

5(!. 8 

M7 311.5 

M1 27.4 

M1 27.4 

M7 24.4 

M10 19.8 

MIO 22.9 

M7 18. ?) 1040 I 250 19.05 

1049 [ 30(/ 25.4 M33 15.2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  j . . . . . . . . . .  

0. 254 

0.457 

0. 635 

0.381 

0.457 

0. 508 

0.381 

0,635 

0.127 

0. 457 

0.229 

0.38l 

0.559 

0. 254 

0.305 

4. Training Data Generation 

The procedure for generating the randomized 

training input data consists of two steps, In the 

first step, the lower and the upper bounds on the 

input variables are defined. Within these limits, 

the sample set is randomly obtained. These limits 

are determined by considering the reasonable 

range of the values for each variable that is likely 

to occur in the operation of a particular cell based 

on its constituent machines. For the case of 

drilling in the demonstration cell, the range of 

parameter hardness is between 125 BHN and 535 

BHN. 

In the second step, an input data set of size n 

from k input variables is formed. As an example, 

there are four inputs for drilling. These are the 

raw material, the hardness, the tool material, and 

the hole diameter. Regarding the number of  train- 

ing input data needed for generalization, Ahmad 

(1989) suggests that the input size n in the order 

of k z~3 random patterns is sufficient for a network 

to learn with high degree of generality. In the 

drilling case, a sample size of rz--90 is used. Some 

of the data set used for training the BPN is shown 

in Table l. 

5. N e t w o r k  L e a r n i n g  R e s u l t  

The network learning is performed with the 

training data to find out the weight matrix and 

node biases. In order to cope with the long train-. 

ing time of BPN, some measures for improving 

el'ficiency are taken. The input patterns and target 

outputs are normalized and scaled within the 

range 0.5 and0 .5 .The l ea rn ing ra t e ( r / )  and the 

momentum(a)  are adjusted during the training 

process for speeding up the convergence. Typical 

values of learning r~,tte are 1,0 to 3.0 for the small 

training data set size, and !1.1 to 0.3 for the large 

training data set size. In the case of drilling, a 

learning rale of 0.2 xvas used, The values of 

momentum are kepl Jess than 1 .0 .The termina- 

tion criterion is set for a maximum output error of 

0.01. An example of the resuhant weight 

matrix and the biases for the case of drilling is 

shown in Table 2. 
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Weight matrix 

Table 2 Weight matrix and biases for drill operation 

Node W j, (i:Preceeding) 
Layer 

i j 1 2 3 4 5 6 7 

From input 

to hidden 

From 

hidden to 

hidden 

F r o m  

hidden to 

output 

0.63548 -6.88472 -2.96061 2.91050 2.50716 ---0.52509 1.23056 

8.11659 13.75063 -1.47320 1.66996 -8.75082 5.73054 -9.90321 

1.61627 -6.37272 0.72570 -5.03440 3.53972 --2.83954 9.18652 

0.72026 0.15873 -2.38315 3.18416 -0.47322 -5.98722 3.05997 

1.37453 -3.63443 -8.86177 -8.96499 -4.26739 --4.20179 -2.45929 

1.30533 4.91780 0.90458 -0.32502 -0.06969 -0.00814 2.36585 

0.84227 -3.95956 3.87847 --10.10952 3.39331 17.23709 1.15399 

0.48097 1.06324 -12.29541 -0.35674 -2.41680 1.14906 5.16952 

2.22554 -1.60456 3.73718 -3.28816 0.07215 0.88020 0.10161 

-2.56526 -2.19187 -3.09466 3.00954 -1.94243 --3.62429 1.41826 

-3.48167 0.55946 -0.00896 2.49217 -2.23343 4.67254 1.94875 

-2.24265 4.05617 -4.74141 1.09121 -3.03116 -5.29675 -5.17504 

9.27810 -4.81895 -0.18701 -9.79425 2.15580 -3.08881 -3.76751 

Biases 

C 

Hidden 1 0.75763 -3.67060 5.54493 -1.96854 0.11851 1.41229 -2.18840 

Hidden 2 1. 69916 1.13007 3. 45615 -0. 69308 -0. 42873 -2. 34371 -1. 92592 
+ 

Output 0. 59779 -7. 03206 

1.15 

1.10 

1.05 

> 1 O0 
r 

> 

9 5  

9 0  

Fig. 2 
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Feed Error Rate 
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Table 3 Machining parameters responses from the network on the trained data set 

Input 

vector 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Referenced output 

variables (Vr~s) 

Network output Ratio 

variables(V~.) ( l /~/  

Speed Feed 
(mpm) (mpr) Speed Feed 

Speed Feed 

(mpm) (mpr) 

40.00 0.29210 

38.10 0.42418 

41.15 0.69850 

42.18 0.43430 

38.68 0.38938 

39.23 0.53340 

38.81 0.40001 

30.20 0.65450 

26.86 0.14158 

26.86 0.45720 

21.95 0.19525 

22.13 0.42797 

20.96 0.508 

17.95 0.22906 

13.38 0.32842 

1.05 

1.00 

1.08 

1.04 

1.06 

0.95 

0.98 

0.99 

0.98 

0.98 

0.90 

1.12 

0.92 

0.98 

0.88 

38.1 

38.1 

38.1 

39.6 

36.6 

41.2 

39.6 

30.5 

27.4 

27.4 

24.4 

19.8 

22.9 

18.3 

15.2 

O. 254 

0.457 

O. 635 

O. 381 

O. 457 

O. 508 

O. 381 

O. 635 

0.127 

O. 457 

O. 229 

O. 381 

O. 559 

0.254 

O. 305 

1.15 

0.93 

1.10 

1.14 

0.87 

1.05 

1.05 

1.03 

1.11 

1.00 

0.85 

1.12 

0.91 

0.90 

1.08 

The performance of the trained Neural Net- 

work for drilling is evaluated to examine how 

well it predicts the machining parameters. The 

test data set and the resulting output machining 

parameter's output values V,~m from the network 

are compared to the reference values Vrej which 

are used for training as shown in Table 3. 

The comparison between the actual test set data 

which are not chosen for training and the back 

-propagation results should be necessary to deter- 

mine the possibility of utilizing these networks to 

the real situation. The ratios between the output 

values from the network and reference values, i. 

e., Vnn/Vref, for the speed and the feed are 

measured and plotted as shown in Figs. 2 and 3, 

respectively. Two input variables, the tool mate- 

rial and hardness, are set as tool material group 

M1 M7 M10, and 125 BHN, respectively. The 

comparison procedure is performed by consider- 

ing several workpiece materials at each hole 

diameter to be operated. As shown in Figs, six 

types of workpice materials considered here are 

illustrated in legend boxes. Comparison results 

show that the Neural Network is able to predict 

the machining parameter values within 15%. 

6. Conclusions  

A neural network based approach, Back Propa- 

gation Neural networks (BPN), to cutting param- 

eter selection for planning machining operations 

has been described in this paper. The multi-layer- 

ed feed forward BPNs developed consist of an 

input layer which allows data to be presented to 

the network, output layer which holds the 

response of the network to a given input, and two 

hidden layers. Each layer has a set number of 

nodes that are chosen to fit the problem at hand. 

The average sum of squared error in predicting 

the test set data was introduced as a means of 

choosing the optimum node number of hidden 

layers. For the drilling operation case, the input 

layer, output layer, first hidden layer, and second 

hidden layer have 4, 2, 15, and 15 nodes, respec- 
tively. 

Currently, the system provides three neural 
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networks: for turning, for milling, and for drilling 
operations. These networks have been trained 
based on standard handbook data. Test results 
have proven that neural networks do in fact have 
the ability to solve this problem within 15% error 
rate. This approach saves computing and storage 
space. In addition, it provides easy extendibility 

as new data become available. 
For the future work, this model combining 

with fuzzy logic can be extended to adaptive 
control of machining operations for on-line 
adjustment of cutting parameters based on infor- 
mation from sensors. 
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